Publications by authors named "Y Sobolevsky"

The conserved protein sequence motifs present in all prokaryotic proteomes, "omnipresent motifs," presumably, correspond to the earliest proteins of the Last Universal Cellular Ancestor, from which all the proteomes have descended. Fifteen proteomes, each representing one of the total 15 diverse phyla of 131 Eubacteria and Archea, from which the omnipresent elements have been originally derived, are exhaustively screened. All those proteins which harbor the omnipresent motifs are identified.

View Article and Find Full Text PDF

Twenty-seven protein sequence elements, six to nine amino acids long, were extracted from 15 phylogenetically diverse complete prokaryotic proteomes. The elements are present in all of these proteomes, with at least one copy each (omnipresent elements), and have presumably been conserved since the last universal common ancestor (LUCA). All these omnipresent elements are identified in crystallized protein structures as parts of highly conserved closed loops, 25-30 residues long, thus representing the closed-loop modules discovered in 2000 by Berezovsky et al.

View Article and Find Full Text PDF

Evolution of the triplet code is reconstructed on the basis of consensus temporal order of appearance of amino acids. Several important predictions are confirmed by computational sequence analyses. The earliest amino acids, alanine and glycine, have been encoded by GCC and GGC codons, as today.

View Article and Find Full Text PDF

Universal scale of the sequence conservation has been recently introduced based on omnipresence of the protein sequence motifs across species. A large spectrum of short sequences, up to eight residues has been found to reside in all or almost all prokaryotic organisms. By this discovery a principally novel quantitative approach is introduced to the problem of reconstruction of the last universal common ancestor (LUCA).

View Article and Find Full Text PDF

A full repertoire of octapeptides which are present in at least 30 bacterial proteomes of total 131 currently available is computationally derived and filtered. An original search technique is used that, in terms of computational time and memory, is similar to the Suffix tree method. The presence of a given sequence in a large number of proteomes qualifies it as a conserved sequence.

View Article and Find Full Text PDF