Publications by authors named "Y Shiratori"

Background: Identifying patients on dialysis among those with an estimated glomerular filtration rate (eGFR) < 15 mL/min/1.73 m remains challenging. To facilitate clinical research in advanced chronic kidney disease (CKD) using electronic health records, we aimed to develop algorithms to identify dialysis patients using laboratory data obtained in routine practice.

View Article and Find Full Text PDF
Article Synopsis
  • Self-supervised learning (SSL) is increasingly being used in medical imaging, particularly through methods like the Jigsaw puzzle task, which helps models learn features and relationships within images without needing labeled data.
  • The study evaluated different pre-training methods on mammographic images from the Chinese Mammography Database, comparing the effectiveness of models that used Jigsaw puzzles, ImageNet tasks, or no pre-training at all in detecting breast cancer.
  • Results showed that models utilizing the Jigsaw puzzle task achieved the highest area under the curve (AUC) scores, indicating its potential to improve classification accuracy even with limited data.
View Article and Find Full Text PDF

Rationale: Some patients with interstitial lung disease (ILD) have a high mortality rate or experience acute exacerbation of ILD (AE-ILD) that results in increased mortality. Early identification of these high-risk patients and accurate prediction of the onset of these important events is important to determine treatment strategies. Although various factors that affect disease behavior among patients with ILD hinder the accurate prediction of these events, the use of longitudinal information may enable better prediction.

View Article and Find Full Text PDF

Background: Multiple first-line treatment options have been developed for advanced non-small cell lung cancer (NSCLC) in each subgroup determined by predictive biomarkers, specifically driver oncogene and programmed cell death ligand-1 (PD-L1) status. However, the methodology for optimal treatment selection in individual patients is not established. This study aimed to develop artificial intelligence (AI)-based personalized survival prediction model according to treatment selection.

View Article and Find Full Text PDF