Publications by authors named "Y Shiota"

Chondrosarcoma (CS) is a malignant tumor that produces cartilaginous matrix and is the second most common primary bone sarcoma. CS encompasses a range of histological subtypes, with high-grade conventional central CS being particularly rare, occurring at a rate of 1.81 cases per 1 million person-years.

View Article and Find Full Text PDF

Giant cell tumor of bone (GCTB) is a rare bone tumor that is genetically characterized by a unique mutation in the H3-3A gene. Curative surgical resection is the standard treatment. Unfortunately, a considerable proportion of patients with GCTB have local recurrence and pulmonary metastasis after surgical treatment, and current chemotherapy treatments have shown non-effective.

View Article and Find Full Text PDF

Antiferromagnetic magnons possess a distinctive feature absent in their ferromagnetic counterparts: the presence of two distinct handedness modes, the right-handed (RH) and left-handed (LH) precession modes. The magnon handedness determines the sign of spin polarization carried by the propagating magnon, which is indispensable for harnessing the diverse functionalities in magnonic devices, such as data encoding, magnon polarization-based logic systems, and quantum applications involving magnons. However, the control of coherently propagating magnon handedness in antiferromagnets has remained elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method for oxidizing aromatic compounds using oxygen as the oxidant under visible light, producing only 2-electron oxidized products in acidic water.
  • The photocatalyst used is a ruthenium complex with a specific pyrazine-containing ligand, which is activated by its protonated form rather than the complex itself.
  • The study demonstrates an efficient process for oxidizing benzyl alcohol to benzaldehyde with high turnover and highlights that the oxidation mechanism involves a unique pathway not consistent with traditional photocatalytic processes.
View Article and Find Full Text PDF

The reduction of nitrogen oxides (NO), which is mainly mediated by metalloenzymes and metal complexes, is a critical process in the nitrogen cycle and environmental remediation. This Frontier article highlights the importance of density functional theory (DFT) calculations to gain mechanistic insights into nitrite (NO) and nitric oxide (NO) reduction reactions facilitated by copper complexes by focusing on two key processes: the reduction of NO to NO by a monocopper complex, with special emphasis on the concerted proton-electron transfer, and the reduction of NO to NO by a dicopper complex, which involves N-N bond formation, NO isomerization, and N-O bond cleavage. These findings underscore the utility of DFT calculations in unraveling complicated reaction mechanisms and offer a foundation for future research aimed at improving the reactivity of transition metal complexes in NO reduction reactions.

View Article and Find Full Text PDF