Rationale: The psychotomimetic effects of cannabis are believed to be mediated via cannabinoid CB1 receptors. Furthermore, studies have implicated CB1 receptors in the pathophysiology of schizophrenia.
Objective: These studies investigated the effects of the CB1 receptor antagonist, AVE1625, in acute pharmacological and neurodevelopmental models of schizophrenia.
Nitric oxide synthase (NOS) is thought to migrate improperly during development in the brains of schizophrenic patients. Also it is known that nitric oxide (NO) effects synaptogenesis during development of the CNS. Previously we have shown that neonatal treatment with a NOS inhibitor effects an animal's sensitivity to amphetamine and PCP.
View Article and Find Full Text PDFMDL 105,519, (E)-3-(2-phenyl-2-carboxyethenyl)-4,6-dichloro-1 H-indole-2-carboxylic acid, is a potent and selective inhibitor of [3H]glycine binding to the NMDA receptor. MDL 105,519 inhibits NMDA (N-methyl-D-aspartate)-dependent responses including elevations of [3H]N-[1,(2-thienyl)cyclohexyl]-piperidine ([3H]TCP) binding in brain membranes, cyclic GMP accumulation in brain slices, and alterations in cytosolic CA2+ and NA(+)-CA2+ currents in cultured neurons. Inhibition was non-competitive with respect to NMDA and could be nullified with D-serine.
View Article and Find Full Text PDFThe compound 5-(4-chlorophenyl)-2,4-dihydro-4-ethyl-3H-1,2,4-triazol-3-one (MDL 27,192) was evaluated in a variety of rodent models to assess its anticonvulsant profile and its potential neuroprotective activity. MDL 27,192 demonstrated anticonvulsant activity in a wide range of epilepsy models that are genetically-based (audiogenic seizures in the seizure susceptible DBA/2J or Frings mouse; spike wave seizures in genetic absence epilepsy rats of Strasbourg (GAERS), electrically-based (MES seizures in mice and rats, corneally-kindled seizures in rats) and chemically-based (bicuculline, PTZ, picrotoxin, 3-mercaptopropionic acid, quinolinic acid and strychnine). When compared to valproate, orally administered MDL 27,192 was 17-48-fold more potent as an anticonvulsant and showed a safety index one to three-fold greater.
View Article and Find Full Text PDFIn preclinical studies, [R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4- piperidinemethanol] [formula: see text] (MDL 100,907), a putative atypical antipsychotic, was characterized in vitro as a potent and selective ligand for the serotonin2A (5-HT2A) receptor and was evaluated in vitro and in vivo as a potent 5-HT2A receptor antagonist. Furthermore, MDL 100,907's potential CNS safety profile and selectivity as a potential antipsychotic agent were evaluated and compared with benchmark compounds. MDL 100,907 demonstrated low nanomolar or subnanomolar binding in vitro at the 5-HT2A receptor and showed a > 100-fold separation from all other receptors measured.
View Article and Find Full Text PDF