Publications by authors named "Y Sekita"

Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo.

View Article and Find Full Text PDF

In this chapter, we present an experimental protocol to conduct DNA methylation editing experiments, that is, to induce loss or gain of DNA methylation, targeting Dlk1-Dio3 imprinted domain, a well-studied imprinted locus, in ES cells. In this protocol, plasmid vectors expressing the DNA methylation editing tools, combining the CRISPR/dCas9 system and the SunTag system coupled to a DNA methyltransferase or a TET enzyme, are introduced into cells for transient expression. By employing this strategy, researchers can effectively investigate a distinct DNA methylation signature that has an impact on the imprinting status, including gene expression and histone modifications, across the entire domain.

View Article and Find Full Text PDF

In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility.

View Article and Find Full Text PDF

The Dlk1-Dio3 imprinted domain is controlled by an imprinting control region (ICR) called IG-DMR that is hypomethylated on the maternal allele and hypermethylated on the paternal allele. Although several genetic mutation experiments have shown that IG-DMR is essential for imprinting control of the domain, how DNA methylation itself functions has not been elucidated. Here, we performed both gain and loss of DNA methylation experiments targeting IG-DMR by transiently introducing CRISPR/Cas9 based-targeted DNA methylation editing tools along with one guide RNA into mouse ES cells.

View Article and Find Full Text PDF

Sexual reproduction involves the creation of sex-dependent gametes, oocytes and sperm. In mammals, sexually dimorphic differentiation commences in the primordial germ cells (PGCs) in embryonic gonads; PGCs in ovaries and testes differentiate into meiotic primary oocytes and mitotically quiescent prospermatogonia, respectively. Here, we show that the transition from PGCs to sex-specific germ cells was abrogated in conditional knockout mice carrying a null mutation of Smarcb1 (also known as Snf5) gene, which encodes a core subunit of the SWI/SNF chromatin remodeling complex.

View Article and Find Full Text PDF