Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging.
View Article and Find Full Text PDFNaphthenic acids (NAs) are indigenous and complex components in petroleum. In the context of increasing global energy demand, the increasing extraction of fossil resources leads to increased environmental release of NAs, resulting in various environmental risks. However, the impact of NAs exposure on soil microorganisms remains still unclear.
View Article and Find Full Text PDFStatement Of Problem: The high recurrence rate of denture stomatitis may be related to the strong resistance of fungi. Therefore, the method of providing biomaterials with antifungal properties is an attractive solution for improving microbial control.
Purpose: Against the drug resistance of Candida albicans, this study aim to elucidate the photocatalytic antibacterial effect of TiO-HAP nanocomposite-modified PMMA on Candida albicans through in vitro experiments, and to evaluate the potential impact of the mechanical properties, optical properties, cytotoxicity and contact angle of the modified PMMA, to provide a scientific basis for the development of denture base resins with minimum percentage of photocatalytic additives.
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes to realize large-scale quantum networks. In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits: one type, called the communication qubit, to establish an entangling interface with telecom photons; and the other type, called the memory qubit, to store quantum information immune from photon scattering under entangling attempts. Here, we report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node based on two trapped ^{40}Ca^{+} ions.
View Article and Find Full Text PDF