Radiat Prot Dosimetry
June 2024
The features of the glow curves of LiF:Mg,Ti are dependent on many parameters of irradiation, storage, ionisation density and readout. These are presented herein with emphasis on their complexity. Successful applications require some understanding of the great diversity of the glow curves.
View Article and Find Full Text PDFThe effect of natural rapid cooling and oven slow cooling on the precision of thermoluminescence measurements of LiF:Mg,Ti is investigated. Three separate series of measurements resulted in average precisions of 5.1 and 5.
View Article and Find Full Text PDFA seeming contradiction in the prediction of the spatially correlated trapping center/luminescent center model applied to LiF:Mg,Ti has been the linear/supralinear behavior of the dose response of glow peak 5a. In the TC/LC model, the localised electron-hole recombination, giving rise to glow peak 5a, is expected to result in an extended region of linear dose response. Deconvolution of the glow curves based on first order kinetic peak shapes results, however, in a dose response of peak 5a, which closely resembles the linear/supralinear dose response of peak 5.
View Article and Find Full Text PDFThe computerised deconvolution of thermoluminescence glow curves into component glow peaks is discussed in detail with special emphasis on advances of the subject post 2013. A plethora of computer codes have been developed using models based on first-order kinetics, second-orders kinetics, interactive traps and continuous distributions of activation energies. The glow curves of several materials are displayed and discussed along with new and improved dosimetric applications:precision effects of heating rate, heavy charged particles, mixed field α/ϒ dosimetry, fading and dose-response linearity.
View Article and Find Full Text PDF