Publications by authors named "Y S Balin"

Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation.

View Article and Find Full Text PDF

Problems encountered in the interpretation of results of laser sensing of crystal clouds are considered. The parameters characterizing the cloud particle orientation are determined through the backscattering phase matrix elements. It is demonstrated how these parameters are related to the probability density of particle distribution over the spatial orientation angles.

View Article and Find Full Text PDF

In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

View Article and Find Full Text PDF

The application of circularly polarized laser radiation and measurement of the fourth Stokes parameter of scattered radiation considerably reduce the probability of obtaining ambiguous results for radiation depolarization in laser sensing of crystal clouds. The uncertainty arises when cloud particles appear partially oriented by their large diameters along a certain azimuth direction. Approximately in 30% of all cases, the measured depolarization depends noticeably on the orientation of the lidar reference plane with respect to the particle orientation direction.

View Article and Find Full Text PDF

A method of interpreting data of multifrequency Raman lidar sensing is developed. An algorithm for separating aerosol layers with different scattering properties and subsequently estimating the average value of the lidar ratio and Angström parameter within individual layers is suggested. The algorithm allows the error of reconstructing the backscattering coefficient from daytime observations to be at least halved.

View Article and Find Full Text PDF