Chiral magnets have garnered significant interest due to the emergence of unique phenomena prohibited in inversion-symmetric magnets. While the equilibrium characteristics of chiral magnets have been extensively explored through the Dzyaloshinskii-Moriya interaction (DMI), nonequilibrium properties like magnetic damping have received comparatively less attention. We present the inaugural direct observation of chiral damping through Brillouin light scattering (BLS) spectroscopy.
View Article and Find Full Text PDFGermanium nitride, having cubic spinel structure, γ-GeN, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli ( and , respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering values but consistently predicted much higher than the so far available experimental value.
View Article and Find Full Text PDFSpin-pumping-induced damping and interfacial Dzyaloshinskii-Moriya interaction (iDMI) have been studied in Pt/CoFeAl/MgO systems grown on Si or MgO substrates as a function of Pt and CoFeAl (CFA) thicknesses. For this, we combined vibrating sample magnetometry (VSM), microstrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS). VSM measurements of the magnetic moment at saturation per unit area revealed the absence of a magnetic dead layer in both systems, with a higher magnetization at saturation obtained for CFA grown on MgO.
View Article and Find Full Text PDFIn this article, we present a numerical study on stabilization and eigenmodes of the so-called skyrmion chiral spin texture in nanometric dots. The first aim of this study is to identify the appropriate multilayer in a set of Pt/Co/MgO structures with different Co thicknesses that have been previously experimentally characterized. Stabilization occurs if the energy favoring skyrmions is greater than the geometric mean of the exchange and anisotropy energies.
View Article and Find Full Text PDFMagnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. In the presence of asymmetric exchange interactions, their chirality, which governs their dynamics, is generally considered as an intrinsic parameter set during the sample deposition. In this work, we experimentally demonstrate that a gate voltage can control this key parameter.
View Article and Find Full Text PDF