Parkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the gene (p.
View Article and Find Full Text PDFPlexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models.
View Article and Find Full Text PDFGermline heterozygous GATA2 mutations underlie a complex disorder characterized by bone marrow failure, immunodeficiency and high risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our understanding about GATA2 deficiency is limited due to the lack of relevant disease models. Here we generated high quality human induced pluripotent stem cell (iPSC) lines carrying two of the most recurrent germline GATA2 mutations (R389W and R396Q) associated with MDS, using CRISPR/Cas9.
View Article and Find Full Text PDFA deeper understanding of early disease mechanisms occurring in Parkinson's disease (PD) is needed to reveal restorative targets. Here we report that human induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) obtained from healthy individuals or patients harboring LRRK2 PD-causing mutation can create highly complex networks with evident signs of functional maturation over time. Compared to control neuronal networks, LRRK2 PD patients' networks displayed an elevated bursting behavior, in the absence of neurodegeneration.
View Article and Find Full Text PDF