Publications by authors named "Y Rabin"

Advanced liver preservation strategies could revolutionize liver transplantation by extending preservation time, thereby allowing for broader availability and better matching of transplants. However, developing new cryopreservation protocols requires exploration of a complex design space, further complicated by the scarcity of real human livers to experiment upon. We aim to create computational models of the liver to aid in the development of new cryopreservation protocols.

View Article and Find Full Text PDF

Successful cryopreservation of the whole ovary outside of the body, while a woman undergoes cancer treatments, may help preserving fertility and regaining hormone balance during recovery. One of the key challenges in whole ovary cryopreservation is adequately loading the organ with cryoprotective agents (CPAs). Another notable challenge in developing the application is the lack of geometric data needed for designing matching thermal protocols.

View Article and Find Full Text PDF

Successful long-term cryobanking of multicellular tissues and organs at deep subzero temperatures calls for the avoidance of ice cryoinjury by reliance upon ice-free cryopreservation techniques. However, the quality of the cryopreserved material is the direct result of its ability to survive a host of harmful mechanisms, chief among which is overcoming the trifecta effects of ice crystallization, toxicity, and mechanical stress. This study aims at exploring improved conditions to scale-up ice-free cryopreservation by combining DP6 as a base cryoprotective agent (CPA) solution with an array of synthetic ice modulators (SIMs).

View Article and Find Full Text PDF

Black and African American adults exhibited higher levels of mistrust and vaccine hesitancy and lower levels of vaccination throughout the COVID-19 pandemic. Vaccination and booster uptake remains disproportionately low among Black adults. We conducted a systematic review of empirical research published between February 2021 and July 2022 from five electronic databases and the grey literature.

View Article and Find Full Text PDF

Morphogenesis involves the transformation of initially simple shapes, such as multicellular spheroids, into more complex 3D shapes. These shape changes are governed by mechanical forces including molecular motor-generated forces as well as hydrostatic fluid pressure, both of which are actively regulated in living matter through mechano-chemical feedback. Inspired by autonomous, biophysical shape change, such as occurring in the model organism hydra, we introduce a minimal, active, elastic model featuring a network of springs in a globe-like spherical shell geometry.

View Article and Find Full Text PDF