Publications by authors named "Y Ra'di"

In numerous applications from radio to optical frequencies including stealth and energy harvesting, there is a need to design electrically thin layers capable of perfectly absorbing electromagnetic waves over a wide bandwidth. However, a theoretical upper bound exists on the bandwidth-to-thickness ratio of metal-backed, passive, linear, and time-invariant absorbing layers. Absorbers developed to date, irrespective of their operational frequency range or material thickness, significantly underperform when compared to this upper bound, failing to exploit the full potential that passive, linear, and time-invariant systems can provide.

View Article and Find Full Text PDF

Lightweight, low-cost metasurfaces and reflectarrays that are easy to stow and deploy are desirable for many terrestrial and space-based communications and sensing applications. This work demonstrates a lightweight, flexible metasurface platform based on flat-knit textiles operating in the cm-wave spectral range. By using a colorwork knitting approach called float-jacquard knitting to directly integrate an array of resonant metallic antennas into a textile, two textile reflectarray devices, a metasurface lens (metalens), and a vortex-beam generator are realized.

View Article and Find Full Text PDF

Tailored time variations, nonlinearities and active elements can endow metasurfaces with unique opportunities for next-generation wireless communication systems, enriching the growing platform of reconfigurable intelligent surfaces.

View Article and Find Full Text PDF

Antenna technology is at the basis of ubiquitous wireless communication systems and sensors. Radiation is typically sustained by conduction currents flowing around resonant metallic objects that are optimized to enhance efficiency and bandwidth. However, resonant conductors are prone to large scattering of impinging waves, leading to challenges in crowded antenna environments due to blockage and distortion.

View Article and Find Full Text PDF

Active materials have been explored in recent years to demonstrate superluminal group velocities over relatively broad bandwidths, implying a potential path towards bold claims such as information transport beyond the speed of light, as well as antennas and metamaterial cloaks operating over very broad bandwidths. However, causality requires that no portion of an impinging pulse can pass its precursor, implying a fundamental trade-off between bandwidth, velocity and propagation distance. Here, we clarify the general nature of superluminal propagation in active structures and derive a bound on these quantities fundamentally rooted into stability considerations.

View Article and Find Full Text PDF