Publications by authors named "Y Poumay"

Increasing resistance of dermatophytes against antifungals creates global public health problems, rendering essential a better understanding of virulence mechanisms and factors determining host specificity of dermatophytes. Because dermatophytes switch from a saprophytic to a parasitic lifestyle by reprogramming gene expression, reliable experimental models are needed to investigate the pathogenesis of dermatophytosis. In this study, a relevant mouse model of Trichophyton benhamiae dermatophytosis was assessed, together with a model based on reconstructed human epidermis, allowing their respective validation regarding fungal gene expressed during infection.

View Article and Find Full Text PDF

The Reconstructed Human Epidermis (RHE) model derived from epidermal keratinocytes offers an ethical and scientific alternative to animal experimentation, particularly in cutaneous toxicology and dermatological research, where the elimination of animal cruelty is of paramount importance. Thus, we compared commercially available chemically defined animal origin-free (cdAOF) supplements, designed for regenerative medicine, to the widely utilized supplement (human keratinocyte growth supplement), which contains growth factors and bovine pituitary extract. Herein we present the extended characterization of RHE derived from newborn, adult, and immortalized N/telomerase reverse transcriptase keratinocytes under cdAOF conditions.

View Article and Find Full Text PDF

Nipple-areolar complex (NAC) reconstruction after breast cancer surgery is challenging and does not always provide optimal long-term esthetic results. Therefore, generating a NAC using tissue engineering techniques, such as a decellularization-recellularization process, is an alternative option to recreate a specific 3D NAC morphological unit, which is then covered with an regenerated epidermis and, thereafter, skin-grafted on the reconstructed breast. Human NACs were harvested from cadaveric donors and decellularized using sequential detergent baths.

View Article and Find Full Text PDF

Background: For one half-century, cultures of human epidermal keratinocytes have opened new paths of research in skin biology and dermatology. Either performed with serum and feeder layer, in serum-free conditions, or in autocrine conditions, cells cultured as monolayers became research materials for basic science and dermatology, as well as a source for grafting, particularly to treat severely burned patients. More recently, tissue reconstruction at air-liquid interface has opened new perspectives for in vitro toxicology, studies of epidermal barrier, and modeling skin diseases.

View Article and Find Full Text PDF