Publications by authors named "Y P Opachich"

Opacity measurements are being carried out at the Z-facility at Sandia National Laboratories and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The current soft x-ray Opacity Spectrometer (OpSpec) used on the NIF uses two elliptically bent crystals in time-integrated mode on either an image plate or a film. Plans are under way to expand these opacity measurements into a mode of time-resolved detection, called OpSpecTR.

View Article and Find Full Text PDF

X-ray opacity measurements on the National Ignition Facility (NIF) are in the process of reproducing earlier measurements from the Sandia Z Facility, in particular for oxygen and iron plasmas. These measurements have the potential to revise our understanding of the "solar problem" and of the hot degenerate Q class white dwarf structure by probing plasma conditions near the base of their convection zones. Accurate opacity measurements using soft x-ray Bragg crystal spectrometers require correction for higher-order diffraction effects.

View Article and Find Full Text PDF

A new time-resolved opacity spectrometer (OpSpecTR) is currently under development for the National Ignition Facility (NIF) opacity campaign. The spectrometer utilizes Icarus version 2 (IV2) hybridized complementary metal-oxide-semiconductor sensors to collect gated data at the time of the opacity transmission signal, unlocking the ability to collect higher-temperature measurements on NIF. Experimental conditions to achieve higher temperatures are feasible; however, backgrounds will dominate the data collected by the current time-integrating opacity spectrometer.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

The goal of the Xflows experimental campaign is to study the radiation flow on the National Ignition Facility (NIF) reproducing the sensitivity of the temperature (±8 eV, ±23 μm) and density (±11 mg/cc) measurements of the COAX platform [Johns et al., High Energy Density Phys. 39, 100939 (2021); Fryer et al.

View Article and Find Full Text PDF