Publications by authors named "Y P Kalmykov"

A fractional Smoluchowski equation for the orientational distribution of dipoles incorporating interactions with continuous time random walk Ansatz for the collision term is obtained. This equation is written via the non-inertial Langevin equations for the evolution of the Eulerian angles and their associated Smoluchowski equation. These equations govern the normal rotational diffusion of an assembly of non-interacting dipolar molecules with similar internal interacting polar groups hindering their rotation owing to their mutual potential energy.

View Article and Find Full Text PDF

A fractional Fokker-Planck equation based on the continuous time random walk Ansatz is written via the Langevin equations for the dynamics of a dipole interacting with its surroundings, as represented by a cage of dipolar molecules. This equation is solved in the frequency domain using matrix continued fractions, thus yielding the linear dielectric response for extensive ranges of damping, dipole moment ratio, and cage-dipole inertia ratio, and hence the complex susceptibility. The latter comprises a low frequency band with width depending on the anomalous parameter and a far infrared (THz) band with a comb-like structure of peaks.

View Article and Find Full Text PDF

Analytical formulas for the electric birefringence response of interacting polar and anisotropically polarizable molecules due to a uniform alternating electric field are derived using Berne's forced rotational diffusion model [B. J. Berne, J.

View Article and Find Full Text PDF