Publications by authors named "Y Ootuka"

We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer.

View Article and Find Full Text PDF

We report on the mapping of quantum-Hall edge states by quasiresonant photovoltage measurements using a near-field scanning optical microscope. We have observed fine structures near sample edges that shift inward with an increase in magnetic field in accordance with the shift of the positions of the quantum-Hall edge states. We have found a transition from the weak disorder regime where compressible-incompressble strips are visible to the strong disorder regime where fluctuations smear out incompressible strips.

View Article and Find Full Text PDF

We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.

View Article and Find Full Text PDF

The response of a mesoscopic superconducting disk to perpendicular magnetic fields is studied by using the multiple-small-tunnel-junction method, in which transport properties of several small tunnel junctions attached to the disk are measured simultaneously. This allows us to make the first experimental distinction between the giant vortex states and multivortex states. Moreover, we experimentally find a magnetic-field induced rearrangement and combination of vortices.

View Article and Find Full Text PDF

Temperature dependence of zero-bias conductance of the vanadium (V)/multiwall carbon nanotube (MWNT)/V structure is studied. As temperature is reduced, the conductance decreases with a functional form consistent with a power law. For the first time, we find that the exponent depends significantly on gate voltage.

View Article and Find Full Text PDF