Publications by authors named "Y Okamura-Oho"

Understanding anatomical structures and biological functions based on gene expression is critical in a systemic approach to address the complexity of the mammalian brain, where >25 000 genes are expressed in a precise manner. Co-expressed genes are thought to regulate cell type- or region-specific brain functions. Thus, well-designed data acquisition and visualization systems for profiling combinatorial gene expression in relation to anatomical structures are crucial.

View Article and Find Full Text PDF

Background: Assignment of anatomical reference is a key step in integration of the rapidly expanding collection of rodent brain data. Landmark-based registration facilitates spatial anchoring of diverse types of data not suitable for automated methods operating on voxel-based image information.

New Tool: Here we propose a standardized set of anatomical landmarks for registration of whole brain imaging datasets from the mouse and rat brain, and in particular for integration of experimental image data in Waxholm Space (WHS).

View Article and Find Full Text PDF

Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types.

View Article and Find Full Text PDF

Increased information on the encoded mammalian genome is expected to facilitate an integrated understanding of complex anatomical structure and function based on the knowledge of gene products. Determination of gene expression-anatomy associations is crucial for this understanding. To elicit the association in the three-dimensional (3D) space, we introduce a novel technique for comprehensive mapping of endogenous gene expression into a web-accessible standard space: Transcriptome Tomography.

View Article and Find Full Text PDF

Background: Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20-40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months.

View Article and Find Full Text PDF