Publications by authors named "Y N MOLKOV"

Unraveling synaptic interactions between excitatory and inhibitory interneurons within rhythmic neural circuits, such as central pattern generation (CPG) circuits for rhythmic motor behaviors, is critical for deciphering circuit interactions and functional architecture, which is a major problem for understanding how neural circuits operate. Here we present a general method for extracting and separating patterns of inhibitory and excitatory synaptic conductances at high temporal resolution from single neuronal intracellular recordings in rhythmically active networks. These post-synaptic conductances reflect the combined synaptic inputs from the key interacting neuronal populations and can reveal the functional connectome of the active circuits.

View Article and Find Full Text PDF

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body.

View Article and Find Full Text PDF

The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities.

View Article and Find Full Text PDF

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body.

View Article and Find Full Text PDF

Introduction: A major gap in amyloid-centric theories of Alzheimer's disease (AD) is that even though amyloid fibrils per se are not toxic in vitro, the diagnosis of AD clearly correlates with the density of beta-amyloid (Aβ) deposits. Based on our proposed amyloid degradation toxicity hypothesis, we developed a mathematical model explaining this discrepancy. It suggests that cytotoxicity depends on the cellular uptake of soluble Aβ rather than on the presence of amyloid aggregates.

View Article and Find Full Text PDF