Publications by authors named "Y N Gartstein"

Strain-engineering in 2D transition metal dichalcogenide (TMD) semiconductors has garnered intense research interest in tailoring the optical properties via strain-induced modifications of the electronic bands in TMDs, while its impact on the exciton dynamics remains less understood. To address this, an extensive study of transient optical absorption (TA) of both W- and Mo-based single-crystalline monolayer TMDs grown by a recently developed laser-assisted evaporation method is performed. All spectral features of the monolayers as grown on fused silica substrates exhibit appreciable redshifts relating to the existence of strain due to growth conditions.

View Article and Find Full Text PDF

Metal halide perovskites have attracted tremendous attention as promising materials for future-generation optoelectronic devices. Despite their outstanding optical and transport properties, the lack of environmental and operational stability remains a major practical challenge. One of the promising stabilization avenues is metal oxide encapsulation atomic layer deposition (ALD); however, the unavoidable reaction of metal precursors with the perovskite surface in conventional ALD leads to degradation and restructuring of the perovskites' surfaces.

View Article and Find Full Text PDF

Cesium lead halide perovskite nanocrystals (PNCs), while possessing facile chemical synthesis routes and high photoluminescence (PL) properties, are still challenged by issues of instability and degradation. Although atomic layer deposition (ALD) of metal oxides has been one of the common encapsulation approaches for longer term stability, its application inevitably resulted in severe loss of emission efficiency and at times partial loss of structural integrity of perovskites, creating a bottleneck in its practical viability. We demonstrate a nondestructive modified gas-phase technique with codeposition of both precursors trimethylaluminum and water to dramatically enhance the PL emission in zero-dimensional (0D) CsPbBr PNCs alumina encapsulation.

View Article and Find Full Text PDF

Time-resolved photoluminescence (PL) and femtosecond transient absorption (TA) spectroscopy are employed to study the photoexcitation dynamics in a highly emissive two-dimensional perovskite compound (en)PbBr·3Br with the ethylene diammonium (en) spacer. We find that while the PL kinetics is substantially -dependent over the whole range of studied temperatures ∼ 77-350 K, the PL quantum yield remains remarkably nearly -independent up to ∼ 280-290 K, appreciably decreasing only at higher temperatures. Considerable differences are also revealed between the TA spectra and the responses to the excitation power at low and at room temperatures.

View Article and Find Full Text PDF

We demonstrate enhancement of the photoluminescence (PL) properties of individual zero-dimensional (0D) CsPbBr perovskite nanocrystals (PNCs) upon encapsulation by alumina using an appropriately modified atomic layer deposition method. In addition to the increased PL intensity and improved long-term stability of encapsulated PNCs, our single-particle studies reveal substantial changes in the PL blinking statistics and the persistent appearance of the long-lived, "delayed" PL components. The blinking patterns exhibit a modification from the fast switching between fluorescent ON and OFF states found in bare PNCs to a behavior with longer ON states and more isolated OFF states in alumina-encapsulated PNCs.

View Article and Find Full Text PDF