The caridoid or "tail flip" escape behavior of decapod crustaceans is a model system in neurobiology, but many aspects of its biomechanics are not well understood. To understand how the freshwater virile crayfish interacts with the substrate during the tail flip, we studied tail-flip hydrodynamics and force generation for free-moving animals standing on substrate, as well as tethered animals held at different distances from the substrate. We found no significant differences in force generation when distance from substrate was varied.
View Article and Find Full Text PDFA proper orthogonal decomposition (POD) order reduction method was implemented to reduce the full high dimensional dynamical system associated with a wound healing cell migration assay to a low-dimensional approximation that identified the prevailing cell trajectories. The POD analysis generated POD modes that were representative of the prevalent cell trajectories. The shapes of the POD modes depended on the location of the cells with respect to the wound and exposure to disturbed (DF) or undisturbed (UF) fluid flow where the net flow was in the antegrade direction with a retrograde component or fully antegrade, respectively.
View Article and Find Full Text PDFThe goal of this work is to present a method based on fluid-structure interactions to enforce a desired trajectory on a passive double pendulum. In our experiments, the passive double pendulum represents human thigh and shank segments, and the interaction between the fluid and the structure comes from a hydrofoil attached to the double pendulum and interacting with the vortices that are shed from a cylinder placed upstream. When a cylinder is placed in flow, vortices are shed in the wake of the cylinder.
View Article and Find Full Text PDFWe report on results of experimental flow measurements inside a bone scaffold model, subjected to a uniform incoming flow (applied perfusion). Understanding the flow behavior inside a tissue engineered scaffold is essential for mechanistic studies of mechanobiology, particularly flow-sensitive bone cells. Nearly all existing studies that quantify interstitial flow inside engineered bone scaffolds have been based on numerical results, in part due to the difficulties associated with quantitative measurements and visualization of flow inside large, opaque bone or bone mimics.
View Article and Find Full Text PDFIncurable breast cancer bone metastasis causes widespread bone loss, resulting in fragility, pain, increased fracture risk, and ultimately increased patient mortality. Increased mechanical signals in the skeleton are anabolic and protect against bone loss, and they may also do so during osteolytic bone metastasis. Skeletal mechanical signals include interdependent tissue deformations and interstitial fluid flow, but how metastatic tumor cells respond to each of these individual signals remains underinvestigated, a barrier to translation to the clinic.
View Article and Find Full Text PDF