The design and characterization of spatiotemporal nano-/micro-structural arrangement that enable real-time and wide-spectrum molecular analysis is reported and demonestrated in new horizons of biomedical applications, such as wearable-spectrometry, ultra-fast and onsite biopsy-decision-making for intraoperative surgical oncology, chiral-drug identification, etc. The spatiotemporal sesning arrangement is achieved by scalable, binder-free, functionalized hybrid spin-sensitive (<↑| or <↓|) graphene-ink printed sensing layers on free-standing films made of porous, fibrous, and naturally helical cellulose networks in hierarchically stacked geometrical configuration (HSGC). The HSGC operates according to a time-space-resolved architecture that modulate the mass-transfer rate for separation, eluation and detection of each individual compound within a mixture of the like, hereby providing a mass spectrogram.
View Article and Find Full Text PDFSodium is a prominent prognostic biomarker for assessing health status, such as dysnatremia. As of now, detection and monitoring of sodium levels in the human body is carried out by means of laborious and bulky laboratory equipmentand/or by offline analysis of various body fluids. Herein, an innovative stretchable, skin-conformal and fast-response microneedle extended-gate FET biosensor is reported for real-time detection of sodium in interstitial fluids for minimally invasive health monitoring along with high sensitivity, low limit of detection, excellent biocompatibility, and on-body mechanical stability.
View Article and Find Full Text PDFWearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematics. However, it is a challenge to fabricate stretchable and comfortable-to-wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. Herein, covalently grafting nanofibrous polyaniline (PANI) onto stretchable elastomer nanomeshes is reported to obtain a freestanding ultrathin (varying from 300 to 10 000 nm) strain sensor that has high gas permeability (10-33 mg h ).
View Article and Find Full Text PDFChemiresistors that are based on monolayer-capped metal nanoparticles (MCNPs) have been used in a wide variety of innovative sensing applications, including detection and monitoring of diagnostic markers in body fluids, explosive materials, environmental contaminations and food quality control. The sensing mechanism is based on reversible swelling or aggregation and/or changes in dielectric constant of the MCNPs. In this protocol, we describe a procedure for producing MCNP-based chemiresistive sensors that is reproducible from device to device and from batch to batch.
View Article and Find Full Text PDF