In this Letter, over-correction of spherical aberration is used to counteract nonlinear effects such as Kerr self-focusing and plasma effects, resulting in more spherical and small-sized femtosecond laser-inscribed voxels within nonlinear materials. By strategically redirecting marginal focusing rays toward the beginning of the laser modification zone, the induced plasma prevents any rays from causing a structural modification beyond this zone, irrespective of any focus elongation caused by nonlinear effects. The method has been effectively validated across a range of materials, including ZnS, ZnSe, BIG, GeS, and SiO.
View Article and Find Full Text PDFBi-doped glasses and optical fibers are extensively studied since they present broadband optical amplification in the near-infrared region (NIR), in which the optical telecommunication industry greatly depends for the transmission of optical signals. There are many scientific challenges about the NIR luminescent emissions from Bi ions, such as understanding its origin and further improving the associated optical amplification capacity. In this work, Bi-doped germanosilicate glass compositions with ultrabroadband NIR luminescence were fabricated, in the range of 925-1630 nm, which covers O, E, S, C, and L-telecommunication bands.
View Article and Find Full Text PDF