Publications by authors named "Y M Mul"

Guanosine triphosphate (GTP)-binding proteins are involved in controlling a wide range of fundamental cellular processes. In vitro studies have indicated a role for GTP during Drosophila P element transposition. Here we show that P element transposase contains a non-canonical GTP-binding domain that is critical for its ability to mediate transposition in Drosophila cells.

View Article and Find Full Text PDF

Drosophila P elements are mobile DNA elements that encode an 87-kDa transposase enzyme and transpositional repressor proteins. One of these repressor proteins is the 207-amino-acid KP protein which is encoded by a naturally occurring P element with an internal deletion. To study the molecular mechanisms by which KP represses transposition, the protein was expressed, purified, and characterized.

View Article and Find Full Text PDF

Precursor RNA transcribed from the yeast mitochondrial gene coding for the large ribosomal RNA contains a group I intron that can excise itself in vitro. Apart from group I specific sequence elements the intron also contains a gene encoding a DNA endonuclease involved in intron dispersal. A precursor RNA derivative from which this gene has been removed self-splices efficiently, but due to activation of cryptic opening sites located in the 5' exon, the 3' part of this exon is sometimes co-excised with the intron.

View Article and Find Full Text PDF

Initiation of adenovirus DNA replication in vitro minimally requires the viral TP-DNA template and the precursor terminal protein-DNA polymerase heterodimer (pTP-pol). Optimal initiation occurs in the presence of the cellular transcription factors NFI and Oct-1 and the viral DNA binding protein (DBP). We have studied the influence of these three stimulatory proteins on the kinetics of formation of the pTP-dCMP initiation complex.

View Article and Find Full Text PDF

POU domain proteins constitute a family of eukaryotic transcription factors that exert critical functions during development. They contain a conserved 160 amino acids DNA binding domain, the POU domain. Genetic data have demonstrated that some POU domain proteins are essential for the proliferation of specific cell types, suggesting a possible role in DNA replication.

View Article and Find Full Text PDF