Publications by authors named "Y M Koen"

The hepatotoxicity of acetaminophen (APAP) is generally attributed to the formation of a reactive quinoneimine metabolite (NAPQI) that depletes glutathione and covalently binds to hepatocellular proteins. To explore the importance of the N-acyl group in APAP metabolism and toxicity, we synthesized 12 acyl side chain homologues of acetaminophen (APAP) and its 3'-regioisomer (AMAP), including the respective N-(4-pentynoyl) analogues PYPAP and PYMAP. Rat hepatocytes converted APAP, AMAP, PYPAP, and PYMAP extensively to O-glucuronide and O-sulfate conjugates in varying proportions, whereas glutathione or cysteine conjugates were observed only for APAP and PYPAP.

View Article and Find Full Text PDF

The formation of drug-protein adducts via metabolic activation and covalent binding may stimulate an immune response or may result in direct cell toxicity. Protein covalent binding is a potentially pivotal step in the development of idiosyncratic adverse drug reactions (IADRs). Trimethoprim (TMP)-sulfamethoxazole (SMX) is a combination antibiotic that commonly causes IADRs.

View Article and Find Full Text PDF

Isoniazid (INH) has been a first-line drug for the treatment of tuberculosis for more than 40 years. INH is well-tolerated by most patients, but some patients develop hepatitis that can be severe in rare cases or after overdose. The mechanisms underlying the hepatotoxicity of INH are not known, but covalent binding of reactive metabolites is known to occur in animals and is suspected in human cases.

View Article and Find Full Text PDF

Many low molecular weight compounds undergo biotransformation to chemically reactive metabolites (CRMs) that covalently modify cellular proteins. However, the mechanisms by which this covalent binding leads to cytotoxicity are not understood. Prior analyses of lists of target proteins sorted by functional categories or hit frequency have not proven informative.

View Article and Find Full Text PDF

Thioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2.

View Article and Find Full Text PDF