Multicellular cable bacteria display an exceptional form of biological conduction, channeling electric currents across centimeter distances through a regular network of protein fibers embedded in the cell envelope. The fiber conductivity is among the highest recorded for biomaterials, but the underlying mechanism of electron transport remains elusive. Here, we performed detailed characterization of the conductance from room temperature down to liquid helium temperature to attain insight into the mechanism of long-range conduction.
View Article and Find Full Text PDFSurface plasmons in two-dimensional (2D) electron systems have attracted great attention for their promising light-matter applications. However, the excitation of a surface plasmon, in particular, transverse-electric (TE) surface plasmon, remains an outstanding challenge due to the difficulty to conserve energy and momentum simultaneously in the normal 2D materials. Here we show that the TE surface plasmons ranging from gigahertz to terahertz regime can be effectively excited and manipulated in a hybrid dielectric, 2D material, and magnet structure.
View Article and Find Full Text PDFThe shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine the effective charge q of the charge carriers of that tunnel.
View Article and Find Full Text PDFThe recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacteria embed a network of regularly spaced, parallel protein fibers in their cell envelope. These fibers exhibit extraordinary electrical properties for a biological material, including an electrical conductivity that can exceed 100 S cm.
View Article and Find Full Text PDFThe temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS (M(II) = Fe, Co, Ni) can be probed via the anisotropy in the resonance frequency of rectangular membranes, mediated by a combination of anisotropic magnetostriction and spontaneous staggered magnetization.
View Article and Find Full Text PDF