Vanadium oxide-based compounds have attracted significant interest as battery materials, especially in aqueous Zn-ion batteries, due to favorable properties and compatibility in Zn-ion systems. In a simple hydrothermal method with moderate conditions, a novel vanadium oxide compound has been synthesized using ammonium metavanadate with oxalic acid as a reducing agent. Various characterization techniques confirmed the formation of layered VO(HO) nanoplatelets with a tetragonal crystal structure.
View Article and Find Full Text PDFThis manuscript details the development of an asymmetric variant for the Ni-photoredox α-arylation of tetrahydrofuran (THF), which was originally reported in a racemic fashion by Doyle and Molander. Leveraging the enantioselectivity data that we obtained, a complex mechanistic scenario different from those originally proposed is uncovered. Specifically, an unexpected dependence of the product enantiomeric ratio was observed on both the halide identity (aryl chloride vs bromide substrates) and the Ni source.
View Article and Find Full Text PDFA composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.
View Article and Find Full Text PDFHerein, a natural material including chitosan (CTS) and algae (food-grade algae, FGA) was exploited to attain a bio-adsorbent (CTS/FGA) for enhanced methyl violet 2B dye removal. A study of the FGA loading into CTS matrix showed that the best mixing ratio between CTS and FGA to be used for the MV 2B removal was 50 %:50 % (CTS/FGA; 50:50 w/w). The present study employed the Box-Behnken design (RSM-BBD) to investigate the impact of three processing factors, namely CTS/FGA-(50:50) dose (0.
View Article and Find Full Text PDF