Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM).
View Article and Find Full Text PDFSmall molecule inhibitors of many classes of enzymes, including phosphatases, have widespread use as experimental tools and as therapeutics. Efforts to develop inhibitors against the lipid phosphatase and tumour suppressor, PTEN, was for some time limited by concerns that their use as therapy could result in increased risk of cancer. However, the accumulation of evidence that short term PTEN inhibition may be valuable in conditions such as nerve injury has raised interest.
View Article and Find Full Text PDFThe protein kinase AKT is activated strongly by many motogenic growth factors, yet has recently been shown capable of inhibiting migration in several cell types. Here we report that treatment with Migration Stimulating Factor (MSF), a truncated form of fibronectin that promotes the migration of many cell types, inhibits AKT activity in human fibroblasts and endothelial cells. In fibroblasts, treatment with either MSF or the AKT inhibitor, Akti-1/2, stimulated migration into 3D collagen gels to a similar extent and the effects of Akti-1/2 on migration could be blocked by the expression of an inhibitor-resistant mutant, AKT1 W80A.
View Article and Find Full Text PDFThe hormone leptin can cross the blood-brain barrier and influences numerous brain functions (Harvey, 2007). Indeed, recent studies have demonstrated that leptin regulates activity-dependent synaptic plasticity in the CA1 region of the hippocampus (Shanley et al., 2001; Li et al.
View Article and Find Full Text PDFThe Protein Tyrosine Phosphatase (PTP) family comprises a large and diverse group of enzymes, regulating a range of biological processes through de-phosphorylation of many proteins and lipids. These enzymes share a catalytic mechanism that requires a reduced and reactive cysteine nucleophile, making them potentially sensitive to inactivation and regulation by oxidation. Analysis of ten PTPs identified substantial differences in the sensitivity of these enzymes to oxidation in vitro.
View Article and Find Full Text PDF