Publications by authors named "Y Light"

is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in . Among the chemicals tested, phenothiazines were observed to induce laccase activity in with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity.

View Article and Find Full Text PDF

Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors , we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses.

View Article and Find Full Text PDF

The respiratory virus responsible for coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected nearly every aspect of life worldwide, claiming the lives of over 3.9 million people globally, at the time of this publication. Neutralizing humanized nanobody (VH)-based antibodies (VH-huFc) represent a promising therapeutic intervention strategy to address the current SARS-CoV-2 pandemic and provide a powerful toolkit to address future virus outbreaks.

View Article and Find Full Text PDF

The challenges of diagnosing infectious disease, especially in the developing world, and the shortcomings of available instrumentation have exposed the need for portable, easy-to-use diagnostic tools capable of detecting the wide range of causative microbes while operating in low resource settings. We present a centrifugal microfluidic platform that combines ultrasensitive immunoassay and isothermal amplification-based screening for the orthogonal detection of both protein and nucleic acid targets at the point-of-care. A disposable disc with automatic aliquoting inlets is paired with a non-contact heating system and precise rotary control system to yield an easy-to-use, field-deployable platform with versatile screening capabilities.

View Article and Find Full Text PDF