Publications by authors named "Y Liczner"

Peatland degradation is tightly connected to hydrological changes and microbial metabolism. To better understand these metabolism processes, more information is needed on how microbial communities and substrate cycling are affected by changing hydrological regimes. These activities should be imprinted in stable isotope bulk values (δ N, δ C) due to specific isotopic fractionation by different microbial communities, their metabolic pathways and nutrient sources.

View Article and Find Full Text PDF

Peatlands have been drained for land use for a long time and on a large scale, turning them from carbon and nutrient sinks into respective sources, diminishing water regulation capacity, causing surface height loss and destroying biodiversity. Over the last decades, drained peatlands have been rewetted for biodiversity restoration and, as it strongly decreases greenhouse gas emissions, also for climate protection. We quantify restoration success by comparing 320 rewetted fen peatland sites to 243 near-natural peatland sites of similar origin across temperate Europe, all set into perspective by 10k additional European fen vegetation plots.

View Article and Find Full Text PDF

Many of the world's peatlands have been affected by water table drawdown and subsequent loss of organic matter. Rewetting has been proposed as a measure to restore peatland functioning and to halt carbon loss, but its effectiveness is subject to debate. An important prerequisite for peatland recovery is a return of typical microbial communities, which drive key processes.

View Article and Find Full Text PDF