Publications by authors named "Y Legrand"

The Michael addition reaction was revisited with a full focus on sustainability combined with efficiency, using mechanochemistry in mild conditions. First, the synthesis of cyclopentenone derivatives was chosen as a model reaction to find optimal conditions in mechanochemistry while using classical but weak bases. The reaction was efficient (84-95% yields), fast (2-6 h), solvent free, and required 0.

View Article and Find Full Text PDF

A green and effective approach for the synthesis of structurally diversed α-hydroxyphosphonates via hydrophosphonylation of aldehydes under solventless conditions and promoted by biosourced catalysts, called ecocatalysts "Eco-MgZnOx" is presented. Ecocatalysts were prepared from Zn-hyperaccumulating plant species , with simple and benign thermal treatment of leaves rich in Zn, and without any further chemical treatment. The elemental composition and structure of Eco-MgZnOx were characterized by MP-AES, XRPD, HRTEM, and STEM-EDX techniques.

View Article and Find Full Text PDF

Invited for the cover of this issue is the collaborative research team coordinated by Arie van der Lee at the University of Montpellier. The image depicts chiral channels with highly mobile water molecules resulting from the robust self-organization of a simple achiral acetamide. Fully reversible release and re-uptake of water molecules takes place near ambient conditions, with efficient water transport and a good selectivity against NaCl suggesting it to be an efficient candidate for desalination processes.

View Article and Find Full Text PDF
Article Synopsis
  • Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) forms a unique crystalline structure that includes permeable helical water channels as a hydrate.
  • The material demonstrates a robust chiral self-resolution process, maintaining its crystalline form under various conditions and exhibiting reversible water release and uptake.
  • HNDPA channels efficiently transport water at an impressive rate of 3.3 million molecules per second while selectively excluding NaCl, making it a potential candidate for advanced nanomaterial applications.
View Article and Find Full Text PDF

A new sustainable method is reported for the formation of aromatic carbon-heteroatom bonds under solvent-free and mild conditions (no co-oxidant, no strong acid and no toxic reagents) by using a new type of green ionic liquid. The bromination of methoxy arenes was chosen as a model reaction. The reaction methodology is based on only using natural sodium bromine, which is transformed into an electrophilic brominating reagent within an ionic liquid, easily prepared from the melted salt FeCl hexahydrate.

View Article and Find Full Text PDF