Publications by authors named "Y Lavi"

Coronavirus disease 2019 (COVID-19) presents a wide spectrum of symptoms, the causes of which remain poorly understood. This study explored the associations between autoantibodies (AABs), particularly those targeting G protein-coupled receptors (GPCRs) and renin‒angiotensin system (RAS) molecules, and the clinical manifestations of COVID-19. Using a cross-sectional analysis of 244 individuals, we applied multivariate analysis of variance, principal component analysis, and multinomial regression to examine the relationships between AAB levels and key symptoms.

View Article and Find Full Text PDF

Starch-based nanoparticles are highly utilized in the realm of drug delivery taking advantage of their biocompatibility and biodegradability. Studies have utilized Quaternized starch (Q-starch) for small interfering RNA (siRNA) delivery, in which quaternary amines enable interaction with negatively charged siRNA, resulting in self-assembly complexation. Although reports present numerous applications, the demonstrated efficacy is nonetheless limited due to undiscovered cellular mechanistic delivery.

View Article and Find Full Text PDF

Understanding mechanisms underlying various physiological and pathological processes often requires accurate and fully automated analysis of dense cell populations that collectively migrate. In such multicellular systems, there is a rising interest in the relations between biophysical and cell cycle progression aspects. A seminal tool that led to a leap in real-time study of cell cycle is the fluorescent ubiquitination-based cell cycle indicator (FUCCI).

View Article and Find Full Text PDF

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease).

View Article and Find Full Text PDF

There is growing interest in non-psychoactive phytocannabinoids, namely cannabidiol (CBD), cannabigerol (CBG), and cannabichromene, as potential leads for novel therapeutic agents. In this study, we report on the development of new derivatives in which we methylated either position 4 of olivetol or the phenolic positions of olivetol, or both. We introduce a refinement on previously reported chemical procedures for phytocannabinoid derivatization as well as the biological evaluation of all derivatives in anti-inflammatory in vivo models.

View Article and Find Full Text PDF