Publications by authors named "Y Larondelle"

Cancer cells in acidic tumor regions are aggressive and a key therapeutic target, but distinguishing between acid-exposed and hypoxic cells is challenging. Here, we use carbonic anhydrase 9 (CA9) antibodies to mark acidic areas in both hypoxic and respiring tumor areas, along with an HRE-GFP reporter for hypoxia, to isolate distinct cell populations from 3D tumor spheroids. Transcriptomic analysis of CA9-positive, hypoxia-negative cells highlights enriched fatty acid desaturase activity.

View Article and Find Full Text PDF
Article Synopsis
  • - In Gram-negative bacteria, the outer membrane has a unique structure, featuring lipopolysaccharides (LPS) on the outside and glycerophospholipids (GPLs) on the inside, with the Mla system maintaining this balance by removing misplaced GPLs from the outer layer.
  • - The study examines how deleting certain components affects the lipid makeup of the bacteria, changing properties like membrane stiffness and antibiotic susceptibility, while noting an overall increase in GPLs and alterations in LPS structure.
  • - Understanding these lipid composition changes and their effects on the bacterial membrane can help develop new treatments for infections caused by these bacteria, which are significant in hospital settings.
View Article and Find Full Text PDF

Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a pervasive environmental contaminant in aquatic ecosystems that can reach elevated concentrations in fish of high trophic levels, such as salmonids. The present study aims at investigating the individual and combined impacts of dietary MeHg and fatty acids on lipid metabolism in juvenile rainbow trout (Oncorhynchus mykiss) with a focus on two key organs, adipose tissue and liver. MeHg and fatty acids are both known to act on energy homeostasis although little is known about their interplay on lipid metabolism in fish.

View Article and Find Full Text PDF

Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment.

View Article and Find Full Text PDF