Publications by authors named "Y Lammers"

Sedimentary ancient DNA (sedaDNA) has rarely been used to obtain population-level data due to either a lack of taxonomic resolution for the molecular method used, limitations in the reference material or inefficient methods. Here, we present the potential of multiplexing different PCR primers to retrieve population-level genetic data from sedaDNA samples. Vaccinium uliginosum (Ericaceae) is a widespread species with a circumpolar distribution and three lineages in present-day populations.

View Article and Find Full Text PDF

Animals with large energy requirements are forced to optimize their hunting strategy, which may result in differentiation of the diet between sexes and across seasons. Here, we examined spatiotemporal variation in the diet of both sexes of the Pond Bat , a species known to have spatial segregation of sexes when the young are born and lactating. Fecal pellets were collected from live animals for a period of 15 years at various locations in the Netherlands.

View Article and Find Full Text PDF

Population size has increasingly been taken as the driver of past human environmental impact worldwide, and particularly in the Arctic. However, sedimentary ancient DNA (sedaDNA), pollen and archaeological data show that over the last 12,000 years, paleoeconomy and culture determined human impacts on the terrestrial ecology of Arctic Norway. The large Mortensnes site complex (Ceavccageađgi, 70°N) has yielded the most comprehensive multiproxy record in the Arctic to date.

View Article and Find Full Text PDF

The European Alps are highly rich in species, but their future may be threatened by ongoing changes in human land use and climate. Here, we reconstructed vegetation, temperature, human impact and livestock over the past ~12,000 years from Lake Sulsseewli, based on sedimentary ancient plant and mammal DNA, pollen, spores, chironomids, and microcharcoal. We assembled a highly-complete local DNA reference library (PhyloAlps, 3923 plant taxa), and used this to obtain an exceptionally rich sedaDNA record of 366 plant taxa.

View Article and Find Full Text PDF