Publications by authors named "Y L Jia"

Unlabelled: Cell wall-anchored surface proteins of Gram-positive bacteria, harboring a highly conserved YSIRK/G-S signal peptide (SP), are deposited at cell division septum and anchored to septal peptidoglycan. The mechanisms supporting YSIRK protein septal trafficking remain elusive. Previously, we identified that LtaS-mediated lipoteichoic acid (LTA) synthesis restricts septal trafficking of YSIRK+ proteins in .

View Article and Find Full Text PDF

Oral diseases such as dental caries, periodontitis, and oral cancer are prevalent and present significant challenges to global public health. Although these diseases are typically treated through procedures like dental preparation and resin filling, scaling and root planning, or surgical excision, these interventions are often not entirely effective, and postoperative drug therapy is usually required. Traditional drug treatments, however, are limited by factors such as poor drug penetration, significant side effects, and the development of drug resistance.

View Article and Find Full Text PDF

The early monitoring of cardiovascular biomarkers is essential for the prevention and management of some cardiovascular diseases. Here, we present a novel, compact, and highly integrated skin electrode as a mechanical-electrochemical dual-model E-skin, designed for the real-time monitoring of heart rate and sweat ion concentration, two critical parameters for assessing cardiovascular health. As a pressure sensor, this E-skin is suitable for accurate heart rate monitoring, as it exhibits high sensitivity (25.

View Article and Find Full Text PDF

Hematological parameters available on automated hematology analyzers have been shown to be useful indicators for hematological disorders. However, extensive studies especially in aplastic anemia for these indices are sparse. Our aim was to investigate the clinical utility of hematological parameters in aplastic anemia.

View Article and Find Full Text PDF

In situ polymerization strategies hold great promise for enhancing the physical interfacial stability in solid-state batteries, yet (electro)chemical degradation of polymerized interfaces, especially at high voltages, remains a critical challenge. Herein, we find interphase engineering is crucial for the polymerization process and polymer stability and pioneer an in situ polymerization-fluorination (Poly-FR) strategy to create durable interfaces with excellent physical and (electro)chemical stabilities, achieved by designing a bifunctional initiator for both polymerization and on-surface lithium donor reactions. The integrated in situ fluorination converts LiCO impurities on LiNiCoMnO (NCM811) surfaces into LiF-rich interphases, effectively inhibiting the aggressive (de)lithiation intermediates and protecting the interface from underlying chemical degradation, thereby surpassing the stability limitations of polymerization alone.

View Article and Find Full Text PDF