This short article highlights unsolved problems of magnetic reconnection in collisionless plasma. Advanced in-situ plasma measurements and simulations have enabled scientists to gain a novel understanding of magnetic reconnection. Nevertheless, outstanding questions remain concerning the complex dynamics and structures in the diffusion region, cross-scale and regional couplings, the onset of magnetic reconnection, and the details of particle energization.
View Article and Find Full Text PDFWe use multispacecraft Magnetospheric Multiscale observations to investigate electric fields and ion reflection at a nonstationary collisionless perpendicular plasma shock. We identify subproton scale (5-10 electron inertial lengths) large-amplitude normal electric fields, balanced by the Hall term (J×B/ne), as a transient feature of the shock ramp related to nonstationarity (rippling). The associated electrostatic potential, comparable to the energy of the incident solar wind protons, decelerates incident ions and reflects a significant fraction of protons, resulting in more efficient shock-drift acceleration than a stationary planar shock.
View Article and Find Full Text PDFThere is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.
View Article and Find Full Text PDFWe investigate turbulence in magnetic reconnection jets in the Earth's magnetotail using data from the Magnetospheric Multiscale spacecraft. We show that signatures of a limited inertial range are observed in many reconnection jets. The observed turbulence develops on the timescale of a few ion gyroperiods, resulting in intermittent multifractal energy cascade from the characteristic scale of the jet down to the ion scales.
View Article and Find Full Text PDF