Publications by authors named "Y Kashi"

The early detection of spoilage microorganisms and food pathogens is of paramount importance in food production systems. We propose a novel strategy for the early detection of food production defects, harnessing the product microbiome. We hypothesize that by establishing microbiome datasets of proper and defective batches, indicator bacteria signaling production errors can be identified and targeted for rapid quantification as part of routine practice.

View Article and Find Full Text PDF

The emergence and dissemination of antibiotic resistance genes (ARGs) in the ecosystem are global public health concerns. One Health emphasizes the interconnectivity between different habitats and seeks to optimize animal, human, and environmental health. However, information on the dissemination of antibiotic resistance genes (ARGs) within complex microbiomes in natural habitats is scarce.

View Article and Find Full Text PDF

Current prebiotics are predominantly carbohydrates. However, great competition exists among gut microbes for the scarce protein in the colon, as most consumed protein is digested and absorbed in the small intestine. Herein we evaluated in-vivo novel next-generation prebiotics: protein-containing-prebiotics, for selectively-targeted delivery of protein to colonic probiotics, to boost their growth.

View Article and Find Full Text PDF

Sourdough starters harbor microbial consortia that benefit the final product's aroma and volume. The complex nature of these spontaneously developed communities raises challenges in predicting the fermentation phenotypes. Herein, we demonstrated for the first time in this field the potential of genome-scale metabolic modeling (GEMs) in the study of sourdough microbial communities.

View Article and Find Full Text PDF

A two-step sequential strategy involving a biocatalytic dehydrogenation/remote hydrofunctionalization, as a unified and versatile approach to selectively convert linear alkanes into a large array of valuable functionalized aliphatic derivatives is reported. The dehydrogenation is carried out by a mutant strain of a bacteria Rhodococcus and the produced alkenes are subsequently engaged in a remote functionalization through a metal-catalyzed hydrometalation/migration sequence that subsequently react with a large variety of electrophiles. The judicious implementation of this combined biocatalytic and organometallic approach enabled us to develop a high-yielding protocol to site-selectively functionalize unreactive primary C-H bonds.

View Article and Find Full Text PDF