Publications by authors named "Y Kartashov"

Flat-band periodic materials are characterized by a linear spectrum containing at least one band where the propagation constant remains nearly constant irrespective of the Bloch momentum across the Brillouin zone. These materials provide a unique platform for investigating phenomena related to light localization. Meantime, the interaction between flat-band physics and nonlinearity in continuous systems remains largely unexplored, particularly in continuous systems where the band flatness deviates slightly from zero, in contrast to simplified discrete systems with exactly flat bands.

View Article and Find Full Text PDF

The existence of thresholdless vortex solitons trapped at the core of disclination lattices that realize higher-order topological insulators is reported. The study demonstrates the interplay between nonlinearity and higher-order topology in these systems, as the vortex state in the disclination lattice bifurcates from its linear topological counterpart, while the position of its propagation constant within the bandgap and localization can be controlled by its power. It is shown that vortex solitons are characterized by strong field confinement at the disclination core due to their topological nature, leading to enhanced stability.

View Article and Find Full Text PDF

Topological transport is determined by global properties of physical media where it occurs and is characterized by quantized amounts of adiabatically transported quantities. Discovered for periodic potential, it was also explored in disordered and discrete quasiperiodic systems. Here, we report on experimental observation of pumping of a light beam in a genuinely continuous incommensurate photorefractive quasicrystal emulated by its periodic approximants.

View Article and Find Full Text PDF

Higher-order topological insulators (HOTIs) are unique materials hosting topologically protected states, whose dimensionality is at least by 2 lower than that of the bulk. Topological states in such insulators may be strongly confined in their corners which leads to considerable enhancement of nonlinear processes involving such states. However, all nonlinear HOTIs demonstrated so far were built on periodic bulk lattice materials.

View Article and Find Full Text PDF

Vortices are topologically distinctive objects appearing as phase twists in coherent fields of optical beams and Bose-Einstein condensates. Structured networks and artificial lattices of coupled vortices could offer a powerful platform to study and simulate interaction mechanisms between constituents of condensed matter systems, such as antiferromagnetic interactions, by replacement of spin angular momentum with orbital angular momentum. Here, we realize such a platform using a macroscopic quantum fluid of light based on exciton-polariton condensates.

View Article and Find Full Text PDF