Ferromagnetically interacting Ising spins on the pyrochlore lattice of corner-sharing tetrahedra form a highly degenerate manifold of low-energy states. A spin flip relative to this "spin-ice" manifold can fractionalize into two oppositely charged magnetic monopoles with effective Coulomb interactions. To understand this process, we have probed the low-temperature magnetic response of spin ice to time-varying magnetic fields through stroboscopic neutron scattering and SQUID magnetometry on a new class of ultrapure HoTiO crystals.
View Article and Find Full Text PDFA valence critical end point existing near the absolute zero provides a unique case for the study of a quantum version of the strong density fluctuation at the Widom line in the supercritical fluids. Although singular charge and orbital dynamics are suggested theoretically to alter the electronic structure significantly, breaking down the standard quasi-particle picture, this has never been confirmed experimentally to date. We provide the first empirical evidence that the proximity to quantum valence criticality leads to a clear breakdown of Fermi liquid behavior.
View Article and Find Full Text PDFFrustrated magnetic materials, in which local conditions for energy minimization are incompatible because of the lattice structure, can remain disordered to the lowest temperatures. Such is the case for Ba(3)CuSb(2)O(9), which is magnetically anisotropic at the atomic scale but curiously isotropic on mesoscopic length and time scales. We find that the frustration of Wannier's Ising model on the triangular lattice is imprinted in a nanostructured honeycomb lattice of Cu(2+) ions that resists a coherent static Jahn-Teller distortion.
View Article and Find Full Text PDFAn antiferroquadrupolar ordering at T(Q)=0.11 K has been found in a Pr-based superconductor PrIr(2)Zn(20). The measurements of specific heat and magnetization revealed the non-Kramers Γ(3) doublet ground state with the quadrupolar degrees of freedom.
View Article and Find Full Text PDFFermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor β-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal.
View Article and Find Full Text PDF