Publications by authors named "Y Kanomata"

Objectives: Artificial intelligence (AI) holds great promise for transforming the healthcare industry. However, despite its potential, AI is yet to see widespread deployment in clinical settings in significant part due to the lack of publicly available clinical data and the lack of transparency in the published AI algorithms. There are few clinical data repositories publicly accessible to researchers to train and test AI algorithms, and even fewer that contain specialized data from the perioperative setting.

View Article and Find Full Text PDF

Artificial Intelligence (AI) holds great promise for transforming the healthcare industry. However, despite its potential, AI is yet to see widespread deployment in clinical settings in significant part due to the lack of publicly available clinical data and the lack of transparency in the published AI algorithms. There are few clinical data repositories publicly accessible to researchers to train and test AI algorithms, and even fewer that contain specialized data from the perioperative setting.

View Article and Find Full Text PDF

Yarrowia lipolytica, an oleaginous yeast, is capable of accumulating significant cellular mass in lipid making it an important source of biosustainable hydrocarbon-based chemicals. In spite of a similar number of protein-coding genes to that in other Hemiascomycetes, the Y. lipolytica genome is almost double that of model yeasts.

View Article and Find Full Text PDF

Aims: To reveal the cause of the difference in activity of chitinase A from Vibrio proteolyticus and chitinase A from a strain of Vibrio carchariae (a junior synonym of Vibrio harveyi), we investigated the pH-dependent activity of full-length V. proteolyticus chitinase A and a truncated recombinant corresponding to the V. harveyi form of chitinase A.

View Article and Find Full Text PDF

We isolated lactic acid bacteria from the intestinal tract of the pufferfish Takifugu niphobles caught in Shimoda, Shizuoka, Japan by using MRS broth prepared with 50% seawater. Additional screening was carried out using phenotypic tests such as Gram staining, cell morphology, catalase, oxidase and fermentation of glucose. Subsequently 227 isolates screened by the phenotypic tests were subjected to species-specific PCR for Lactococcus lactis, resulting in four positive isolates.

View Article and Find Full Text PDF