Deuterium isotope effects on interaction energies and geometrical parameters in several HO(DO)ene and HO+(DO)yne complexes, which involve O-H(D)π interactions, have been analyzed using the MP2 level of the multi-component molecular orbital method (MC_MP2), which can incorporate the nuclear quantum effects of light nuclei, such as protons and deuterons. The MC_MP2 calculations revealed that DO replacement reduced the interaction energies of the complexes and induced changes in geometrical parameters. In addition, natural energy decomposition analysis (NEDA) revealed a strong correlation between the H/D isotope effects on the H/Dπ distances and on each energy component.
View Article and Find Full Text PDFPurpose: The preoperative assessment of carotid plaques is necessary to render revascularization safe and effective. The aim of this study is to evaluate the usefulness of chemical exchange saturation transfer (CEST)-MRI, particularly amide proton transfer (APT) imaging as a preoperative carotid plaque diagnostic tool.
Methods: We recorded the APT signal intensity on concentration maps of 34 patients scheduled for carotid endarterectomy.
By introducing main-group elements such as boron and bismuth to π-conjugated systems, it is possible to modify the optical properties of π-conjugated materials through orbital interactions between the orbital on the elements and π/π*-orbitals, and the heavy atom effect. Moreover, bismuth, which is the heaviest stable element, induces a significant heavy atom effect, making organobismuth compounds promising for applications as phosphorescent materials. In this study, we synthesized new room-temperature phosphorescent materials by incorporating bismuth into thiophene units.
View Article and Find Full Text PDF