Photochem Photobiol Sci
August 2023
The exposure to UVA (320-400 nm) irradiation is a major threat to human skin concerning photoaging and carcinogenesis. It has been shown that UVA irradiation can induce reactive oxygen species (ROS) and DNA mutations, such as 8-hydroxydeoxyguanosine. Furthermore, UVA induces the expression of photoaging-associated matrix metalloproteases (MMPs), especially of matrix metalloprotease 1 (MMP 1) and matrix metalloprotease 3 (MMP 3).
View Article and Find Full Text PDFThe damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320-400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage.
View Article and Find Full Text PDFUltraviolet (UV) radiation has a plethora of effects on human tissues. In the UV spectrum, wavelengths above 320 nm fall into the UVA range, and for these, it has been shown that they induce reactive oxygen species (ROS), DNA mutations and are capable to induce melanoma in mice. In addition to this, it was recently shown that UVA irradiation and UVA-induced ROS also increase glucose metabolism of melanoma cells.
View Article and Find Full Text PDF