Publications by authors named "Y Kamagata"

Methane, a greenhouse gas and energy source, is commonly studied using stable isotope signals as proxies for its formation processes. In subsurface environments, methane often exhibits equilibrium isotopic signals, but the equilibration process has never been demonstrated in the laboratory. We cocultured a hydrogenotrophic methanogen with an H-producing bacterium under conditions (55°C, 10 megapascals) simulating a methane-bearing subsurface.

View Article and Find Full Text PDF
Article Synopsis
  • A new bacterium, strain IA91, was isolated from deep aquifers in Japan and is characterized as a Gram-negative, anaerobic, and chemoheterotrophic organism that relies on other bacteria for essential nutrients and cell wall formation.
  • * IA91 has a temperature preference for growth between 25-45 °C, with optimal conditions at 40 °C, and produces acetate, hydrogen, and carbon dioxide as main byproducts during substance degradation.
  • * Genetic analysis places IA91 in a newly proposed genus and species, as well as a new bacterial phylum, with no close cultivated relatives identified in existing classifications.
View Article and Find Full Text PDF

The "duckweed-microbes co-cultivation method" is a microbial isolation technique that effectively recovers diverse microbes, including rarely cultivated bacterial phyla, from environmental samples. In this method, aseptic duckweed and microbes collected from an environmental sample are co-cultivated for several days, and duckweed-associated microbes are then isolated from its roots using a conventional agar plate-based cultivation method. We herein propose several improvements to the method in order to specifically obtain members of the rarely cultivated bacterial phylum, Verrucomicrobiota.

View Article and Find Full Text PDF

Background: Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry.

Results: In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG).

View Article and Find Full Text PDF

Most of Earth's prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or 'Candidatus Marinimicrobia') that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria.

View Article and Find Full Text PDF