Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2024
In this work, we present a method for direct, site-selective growth of tellurium nanowires by electrochemical deposition. The Te nanowires were grown laterally between two specially designed nanoband electrodes across a gap, and over a dielectric material, forming a lateral device structure directly. The resulting wires are crystalline and phase pure, as evidenced by Raman spectroscopy, EDS (energy dispersive X-ray spectroscopy), and ADF-STEM (annular dark field scanning transmission electron microscopy).
View Article and Find Full Text PDFThe combination of lithographic methods and sol gel bottom-up techniques is a promising approach for nanopatterning substrates. The integration and scalable fabrication of such substrates are of great interest for the development of nanowire-based materials opening potentialities in new technologies. We demonstrate the deposition of ordered mesoporous silica into nanopatterned silica substrates by dip coating.
View Article and Find Full Text PDFBackground: Type 2 diabetes is associated with increased COVID-19 severity. Little is understood about the needs, concerns and self-management experiences of people with type 2 diabetes during the COVID-19 pandemic.
Aim: To examine the lived experiences of people with type 2 diabetes during the COVID-19 pandemic.
Silica thin films with vertical nanopores are useful to control access to electrode surfaces and may act as templates for growth of nanomaterials. The most effective method to produce these films, electrochemically assisted surfactant assembly, also produces aggregates of silica particles. This paper shows that growth with an AC signal superimposed onto the potential avoids the aggregates and only very small numbers of single particles are found.
View Article and Find Full Text PDF