The genus is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in . A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment.
View Article and Find Full Text PDFReptiles are known to be asymptomatic carriers of various zoonotic pathogens. A number of Gram-negative opportunistic commensals are causative agents of bacterial infections in immunocompromised or stressed hosts and are disseminated by reptiles, whose epidemiological role should not be neglected. Since most studies have focused on exotic species, in captivity or as pet animals, the role of wild populations as a potential source of pathogens still remains understudied.
View Article and Find Full Text PDFWith the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (, formerly ) and of eukaryotic microalgae ().
View Article and Find Full Text PDF