Background: Few prediction models for individuals with early-stage out-of-hospital cardiac arrest (OHCA) have undergone external validation. This study aimed to externally validate updated prediction models for OHCA outcomes using a large nationwide dataset.
Methods And Results: We performed a secondary analysis of the JAAM-OHCA (Comprehensive Registry of In-Hospital Intensive Care for Out-of-Hospital Cardiac Arrest Survival and the Japanese Association for Acute Medicine Out-of-Hospital Cardiac Arrest) registry.
Image-based deep learning (IBDL) is an advanced technique for predicting the surface irradiation conditions of laser surface processing technology. In pulsed-laser surface processing techniques, the number of superimposed laser shots is one of the fundamental and essential parameters that should be optimized for each material. Our primary research aims to build an adequate dataset using laser-irradiated surface images and to successfully predict the number of superimposed shots using the pre-trained deep convolutional neural network (CNN) models.
View Article and Find Full Text PDFThe shock ignition (SI) approach to inertial confinement fusion is a promising scheme for achieving energy production by nuclear fusion. SI relies on using a high intensity laser pulse (≈10 W/cm, with a duration of several hundred ps) at the end of the fuel compression stage. However, during laser-plasma interaction (LPI), several parametric instabilities, such as stimulated Raman scattering and two plasmon decay, nonlinearly generate hot electrons (HEs).
View Article and Find Full Text PDFIn situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.
View Article and Find Full Text PDFHere we report on the effects of material strength factors on the generation of surface structure due to nonuniform laser irradiation. The influence of material strength on the generation of perturbation on a diamond surface subjected to nonuniform laser irradiation was experimentally investigated. Our previous investigations suggested that stiffer and denser materials reduce surface perturbation due to spatially nonuniform laser irradiation, which was reproduced well by calculations with multi-dimensional hydrodynamic simulation code.
View Article and Find Full Text PDF