Publications by authors named "Y Hautier"

Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.

View Article and Find Full Text PDF
Article Synopsis
  • Drought events are becoming more common in grasslands and shrublands, affecting soil organic carbon (SOC), which includes different forms like particulate (POC) and mineral-associated organic carbon (MAOC).
  • A global study over 19 sites revealed that in wetter areas (aridity index > 0.65), extreme drought led to a significant decrease in SOC (7.9%) and POC (15.9%), but MAOC levels remained unchanged.
  • In drier regions (aridity index < 0.65), drought did not significantly affect any type of soil organic carbon, indicating that the impact of drought on SOC is influenced by environmental aridity and rainfall variability.
View Article and Find Full Text PDF

Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters.

View Article and Find Full Text PDF
Article Synopsis
  • * Sites with warmer, wetter conditions and more species generally saw increased biomass, while arid, species-poor areas experienced declines, alongside notable changes in seasonal plant growth patterns.
  • * Factors like grazing and nutrient input didn't consistently predict biomass changes, indicating that grasslands are undergoing substantial transformations that could affect food security, biodiversity, and carbon storage, particularly in dry regions.
View Article and Find Full Text PDF