Publications by authors named "Y H Navale"

A simple one-step chemical method is employed for the successful synthesis of CuO(50%)-ZnO(50%) nanocomposites (NCs) and investigation of their gas sensing properties. The X-ray diffraction studies revealed that these CuO-ZnO NCs display a hexagonal wurtzite-type crystal structure. The average width of 50-100 nm and length of 200-600 nm of the NCs were confirmed by transmission electron microscopic images, and the 1:1 proportion of Cu and Zn composition was confirmed by energy-dispersive spectra, i.

View Article and Find Full Text PDF

Copper oxide (CuO) nanoplates (NPs of ∼100 nm width) were successfully synthesized a chemical method (emulsion method). Superior catalytic activities towards both chemical and electrochemical sensing of nitrite were achieved.

View Article and Find Full Text PDF

Herein, we focused on the one pot synthesis of ZnO nanoplates (NP edge thickness of ∼100 nm) using a chemical emulsion approach for chemical (direct) and electrochemical (indirect) determination of NO. The structural and morphological elucidation of the as-synthesized ZnO NPs was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), thermogravimetric analysis (TGA) and BET-surface area measurements. The XRD studies of the as-synthesised NPs reveal that ZnO NPs have a Wurtzite type crystal structure with a crystallite size of ∼100 nm.

View Article and Find Full Text PDF

Nanostructured tin oxide (SnO) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology.

View Article and Find Full Text PDF

Nodule-type polyaniline (PAni) has been successfully electrosynthesized onto conducting substrate and envisaged in electrochemical supercapacitor (ES) application as a potential energy storage electrode. Various bands are confirmed from the X-ray photoelectron and Fourier transform infrared spectra. Each nodule is of ∼100-200nminlength and 20-80nmindiameter.

View Article and Find Full Text PDF