Objectives: To evaluate the validity and reliability of smartphone-generated three-dimensional (3D) facial images for routine evaluation of the oronasal region of patients with cleft by comparing their accuracy to that of direct anthropometry (DA) and 3dMD.
Materials And Methods: Eighteen soft-tissue facial landmarks were manually labelled on each of the 17 (9 males and 8 females; mean age 23.3 ± 5.
The infantile neuronal ceroid lipofuscinosis, also called CLN1 disease, is a fatal neurodegenerative disease caused by mutations in the CLN1 gene encoding palmitoyl protein thioesterase 1 (PPT1). Identifying the depalmitoylation substrates of PPT1 is crucial for understanding CLN1 disease. In this study, we found that GABAR, the critical synaptic protein essential for inhibitory neurotransmission, is a substrate of PPT1.
View Article and Find Full Text PDFBackground: Over the last decade, the treatment options for inflammatory bowel disease (IBD) have significantly progressed with the emergence of new medications designed to target various immune pathways and mitigate inflammation. Adalimumab (ADA) is a tumor necrosis factor alpha antagonist and stands as an effective treatment for IBD. In April 2021, the province of British Columbia implemented a mandatory non-medical switch policy of the ADA originator Humira to ADA biosimilars.
View Article and Find Full Text PDFThe Alzheimer's Disease Sequencing Project (ADSP) is a national initiative to understand the genetic architecture of Alzheimer's Disease and Related Dementias (AD/ADRD) by sequencing whole genomes of affected participants and age-matched cognitive controls from diverse populations. The Genome Center for Alzheimer's Disease (GCAD) processed whole-genome sequencing data from 36,361 ADSP participants, including 35,014 genetically unique participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in this fourth release (R4). This sequencing effort identified 387 million bi-allelic variants, 42 million short insertions/deletions, and 2.
View Article and Find Full Text PDFMotivation: Chromatin conformation capture experiments (CCC), such as Hi-C and Capture Hi-C (CHiC) work to elucidate the three-dimensional organization of the genome and the underlying epigenetic regulatory structures within. CCC experiments produce large amounts of FASTQ sequencing data with a substantial amount of technical noise and require sophisticated computational pipelines in order to extract meaningful results. Large-scale CCC data repositories like 4D Nucleome and ENCODE mostly provide raw contact information but lack annotated, statistically significant interaction data suitable for downstream genetic and genomic analyses.
View Article and Find Full Text PDF