Publications by authors named "Y Grumbach"

The epithelial Na(+) channel (ENaC) plays a key role in the regulation of blood pressure and airway surface liquid volume. ERp29 is a 29-kDa thioredoxin-homologous endoplasmic reticulum (ER) protein that has only a single cysteine instead of the usual thioredoxin CXXC motif. Our group previously demonstrated that ERp29 promotes biogenesis of the cystic fibrosis transmembrane conductance regulator (CFTR).

View Article and Find Full Text PDF

Endogenous glucocorticoid (GC) activation is regulated by the intracellular GC-activating and -inactivating enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD)1 and 11β-HSD2, respectively, that catalyze interconversion of inert cortisone and its bioactive metabolite cortisol. Because endogenous GCs are critically implicated in suppressing the asthmatic state, this study examined the roles of the 11β-HSD enzymes in regulating GC activation and bronchoprotection during proasthmatic stimulation. Airway hyperresponsiveness to methacholine and inflammation were assessed in rabbits following inhalation of the proasthmatic/proinflammatory cytokine IL-13 with and without pretreatment with the 11β-HSD inhibitor carbenoxolone (CBX).

View Article and Find Full Text PDF

The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o⁻ model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o⁻ parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h.

View Article and Find Full Text PDF

The anti-inflammatory actions of endogenous glucocorticoids (GCs) are regulated by the activities of the GC-activating and -inactivating enzymes, 11beta-hydroxysteroid dehydrogenase (11beta-HSD)-1 and 11beta-HSD2, respectively, that catalyze the interconversion of the inert GC, cortisone, and its bioactive derivative, cortisol. Proinflammatory cytokines regulate 11beta-HSD1 expression in various cell types and thereby modulate the bioavailability of cortisol to the glucocorticoid receptor (GR). Since endogenous GCs reportedly attenuate the airway asthmatic response to allergen exposure, we investigated whether airway smooth muscle (ASM) exhibits cytokine-induced changes in 11beta-HSD1 expression that enable the ASM to regulate its own bioavailability of GC and, accordingly, the protective effect of GR signaling on airway function under proasthmatic conditions.

View Article and Find Full Text PDF

Lipoxin A(4) (LXA(4)) is a biologically active eicosanoid produced in human airways that displays anti-inflammatory properties. In cystic fibrosis and severe asthma, LXA(4) production has been reported to be decreased, and, in such diseases, one of the consequences of airway inflammation is disruption of the tight junctions. In the present study, we investigated the possible role of LXA(4) on tight junction formation, using transepithelial electrical resistance (TER) measurements, Western blotting, and immunofluorescence.

View Article and Find Full Text PDF