Biochem Biophys Res Commun
February 2003
Gephyrin is a bifunctional protein which is essential for both synaptic clustering of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (MoCo) in peripheral tissues. Mice deficient in gephyrin die early postnatally and display a loss of glycine receptors (GlyRs) and many GABA(A) receptor (GABA(A)R) subtypes from postsynaptic sites. In addition, the activities of the MoCo-dependent enzymes xanthine dehydrogenase and sulfite oxidase are reduced to background levels in the liver and intestine of these animals.
View Article and Find Full Text PDFThe brain-specific GDP/GTP exchange factor collybistin interacts with the receptor-anchoring protein gephyrin and activates the Rho-like GTPase Cdc42, which is known to regulate actin cytoskeleton dynamics. Alternative splicing creates two collybistin variants, I and II. In coexpression experiments, collybistin II has been shown to induce the formation of submembraneous gephyrin aggregates which cluster with hetero-oligomeric glycine receptors (GlyRs).
View Article and Find Full Text PDF